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Time is something we intuitively understand
extremely well and, consequently, understand poorly in
detail. For example, any phenomenon which repeats on a
regular basis, such as a pendulum or the motion of elec-
trons in an atom, can be used as the basis for timekeep-
ing. However, “regularly repeating” implies that we have
some standard to compare with. The only way to deter-
mine a clock’s accuracy is to compare it with another
clock, which of course leads to the question of which
clock we should assume to be correct. Historically, the
fundamental “clocks” chosen for maintaining absolute
time have been the rotation of the Earth on its axis and
the revolution of the Earth about the Sun. However,
modern time measurements have shown these systems to
be both nonuniform and extremely difficult to model
with precision. For example, Fig. B-3 in App. B shows
the variations in the length of the day over the past sev-
eral centuries. On average, the Earth is slowing down by
1.5 ms/century but local variations are very substantial.* 

Unfortunately, clock errors are cumulative, and there-
fore, high accuracy can prove important. For example,
assume a spacecraft in low Earth orbit has a clock that is
slowing down by 1 ms/day, which is small enough to be
difficult to measure by many processes. This would result
in a cumulative error of 0.365 sec over a year which cor-
responds to an error in position of the satellite of 3 km.
Thus, if we wish to know the positions of satellites to tens
of meters, we will need reasonably good clocks to do so.

Two basic types of time measurement are used in
spacecraft systems: (1) time intervals between 2 events
such as the spacecraft’s spin period, orbital period, or the
length of time a sensor sees the Earth; and (2) absolute
times or calendar times of specific events, such as the
time associated with some particular spacecraft observa-
tion. Of course, calendar time is simply a time interval
for which the beginning event is an agreed standard.

E.1  Calendar Time and
Long Duration Intervals

Calendar time in the usual form of date and time is
used only for input and output because generally, arith-

metic is cumbersome in months, days, hours, minutes,
and seconds (for computations, absolute time is used
instead, as explained next). Nonetheless, this is used for
most human interaction with space systems because it’s
the system with which we are most familiar. Even with
date and time systems, problems can arise, because time
zones are different throughout the world and spacecraft
operations typically involve a worldwide network. The
uniformly adopted solution to this problem is to use the
local standard time corresponding to 0 deg longitude
(i.e., the Greenwich meridian) as the assigned time for
events anywhere in the world or in space. This is referred
to as Universal Time (UT), Greenwich Mean Time
(GMT), or Zulu (Z), all of which are equivalent for most
practical spacecraft operations. For precise computa-
tions, UT has replaced GMT, since the term GMT can be
ambiguous [Seidelmann, 2006]. The name Greenwich
Mean Time was chosen because 0 deg longitude is
defined by the site of the former Royal Greenwich
Observatory southeast of central London.

Civil time, Tcivil, as measured by a standard wall clock
or time signals, differs from Universal Time by an inte-
gral number of hours, corresponding approximately to the
longitude of the observer. The approximate relation is:

Tcivil ≈ UT ± L / 15 (E-1)

where Tcivil and UT are in hours, and L is the longitude
in degrees with the plus sign corresponding to East lon-
gitude and the minus sign corresponding to West longi-
tude.

The conversion between civil time and Universal
Time for most North American and European time zones
is given in Table Eweb-1. Substantial variations in time
zones are created for political convenience. In addition,
most of the United States and Canada observe Daylight
Savings Time from the second Sunday in March until the
first Sunday in November†. Most European countries
observe Daylight Savings Time (called “Summer Time”)
from the last Sunday in March to the last Sunday in Octo-
ber. Many countries in the southern hemisphere also
maintain Daylight Savings Time, typically from October
to March. Countries near the equator typically do not
deviate from standard time.  

Calendar time is remarkably inconvenient for compu-
tation, particularly over long time intervals of months or
years. We need an absolute time that is a continuous
count of time units from some arbitrary reference. The

   Appendix E

* The overall slowing of the Earth’s rotation and lengthening of
the day are caused primarily by tidal friction with the Moon.
Local variations are caused principally by the growth and de-
cline in the polar ice caps which shifts large quantities of water
from the pole (smaller moment of inertia and higher spin rate)
to the equator (larger moment of inertia and lower spin rate).

† From 1987 to 2006, Daylight Savings Time in the United
States began on the first Sunday of April and ended on the last
Sunday of October. By the Energy Policy Act of 2005, Day-
light Savings Time was extended starting 2007. The Canadian
system follows that of the United States.

Table Eweb-0, Fig. Eweb-0, Eq. E-1
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time interval between any two events is then found by
simply subtracting the absolute time of the second event
from that of the first. The universally adopted solution
for astronomical problems is the Julian Date, JD, a con-
tinuous count of the number of days since Greenwich
noon (12:00 UT) on January 1, 4713 BC,* or, as astron-
omers now say, –4712. Because Julian Days start at noon
UT, they will be a half day off with respect to civil dates.
While this is inconvenient for transforming from civil
dates to Julian Dates, it was useful for astronomers
because this way the date didn’t change in the middle of
the night (for European observers). 

As described below, there are 4 general approaches
for converting between calendar dates and Julian Dates.
Table Look-Up 

Tabulations of the current Julian Date are in most
astronomical ephemerides and almanacs. Table E-1 lists
the Julian Dates at the beginning of each year from 2000
through 2041. To find the Julian Date for any given cal-
endar date, simply add the day number within the year
(and fractional day number, if appropriate) to the Julian
Date for Jan 0.0 of that year from Table E-2. Day num-
bers for each day of the year are on many calendars or
can be found by adding the date to the day number for
day 0 of the month from Table E-2. Thus 18:00 UT on
April 15, 2014 = day number 15.75 + 90 = 105.75 in
2014 = JD 105.75 + 2,456,657.5 = JD 2,456,763.25.    

To convert from Julian Days to dates, determine the
year in which the Julian Date falls from Table E-1. Sub-
tract the Julian Date from the JD for January 0.0 of that
year to determine the day number within the year. This
can be converted to a date (and time, if appropriate) by
using day numbers on a calendar or subtracting from the
day number for the beginning of the appropriate month
from Table E-2. Thus, from Table E-1, JD 2,456,073.25
is in the year 2012. The day number is 2,456,073.25 –
2,455,926.5 = 146.75. From Table E-2, this is 18:00 UT,
May 25, 2012.  

Software Routines Using Integer Arithmetic
A particularly clever procedure for finding the Julian

Date, JD, associated with any current year, Y, month, M,
and day of the month, D, is given by Fliegel and Van
Flandern [1968] as a computer statement using integer
arithmetic. Note that all of the variables must be defined
as integers (i.e., any remainder after a division must be
truncated) and that both the order of the computations
and the parentheses are critical. This procedure works in
FORTRAN, C, C++, and Ada for any date on the Grego-
rian calendar that yields JD > 0. (Add 10 days to the JD
for dates on the Julian calendar prior to 1582.) The for-
mula is:

JD0 = D – 32,075 + 1461 × (Y + 4800
+ (M – 14) / 12) / 4 + 367 × (M – 2
– (M – 14) / 12 × 12) / 12 – 3 × ((Y + 4900
+ (M – 14) / 12) / 100) / 4

(Eweb-1a)

Here JD0 is the Julian Day beginning at noon UT on the
given date and must be an integer. For a fractional day,
F, in UT (i.e., day number “D.F”), the floating point Ju-
lian Day is given by:

JD = JD0 + F – 0.5 (Eweb-1b)

For example, the Julian Day beginning at 12:00 UT on
December 25, 2015 (Y = 2015, M = 12, D = 25) is JD
2,457,382 and 6:00 UT on that date (F = 0.25) is JD
2,457,381.75.

Table Eweb-1.  Time Zones in North America, Europe, and Japan. In most of the United States,
Daylight Savings Time is used from the first Sunday in April until the last Sunday in October. In
Europe, the equivalent “Summer Time” is used from the last Sunday in March to the first Sunday
in October.

Time Zone
Standard Meridian
(Deg, East Long.)

UT Minus Standard 
Time (Hours)

UT Minus Daylight 
Time (Hours)

Atlantic 300 4 3
Eastern 285 5 4
Central 270 6 5
Mountain 255 7 6
Pacific 240 8 7
Alaska 225 9 8
Hawaii 210 10 NA
Japan 135 –9 NA
Central Europe 15 –1 –2
United Kingdom 0 0 –1

* This strange starting point was suggested by an Italian schol-
ar of Greek and Hebrew, Joseph Scaliger, in 1582 as the be-
ginning of the current Julian period of 7,980 years. This
period is the product of three numbers: the solar cycle, or the
interval at which all dates recur on the same days of the week
(28 years); the lunar cycle, containing an integral number of
lunar months (19 years); and the indiction or the tax period
introduced by the Emperor Constantine in 313 AD (15 years).
The last time that these started together was 4713 BC and the
next time will be 3267 AD. Scaliger was interested in reduc-
ing the astronomical dating problems associated with calen-
dar reforms of his time and his proposal had the convenient
selling point that it pre-dated the ecclesiastically approved
date of creation, October 4, 4004 BC. 

Table Eweb-1, Fig. Eweb-0, Eq. Eweb-1b
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The inverse routine for computing the date from the
Julian Day is given by:

L = JD0 + 68,569 (Eweb-2a)

N = (4 × L) / 146,097 (Eweb-2b)
L = L – (146097 × N + 3) / 4 (Eweb-2c)
I = (4000 × (L + 1)) / 1,461,001 (Eweb-2d)
L = L – (1461 ×  I) / 4 + 31 (Eweb-2e)

J = (80 × L) / 2,447 (Eweb-2f)

D = L – (2447 × J) / 80 (Eweb-2g)

L = J / 11 (Eweb-2h)

M = J + 2 – 12 × L (Eweb-2i)

Y = 100 ×  (N – 49) + I + L (Eweb-2j)

where integer arithmetic is used throughout. Y, M, and D
are the year, month, and day, and I, J, L, and N are inter-
mediate variables. Finally, again using integer arithme-
tic, the day of the week, W, corresponding to the Julian
Date beginning at 12:00 on that day is given by:

W = JD0 – 7 ×  ((JD + 1) / 7) + 2 (Eweb-3)

where W = 1 corresponds to Sunday. Thus, December
25, 2015 falls on Friday.

Software Routines Without Integer Arithmetic
While most computer languages provide integer arith-

metic, common software tools such as Excel or MatLab
typically do not. (See below for use of Excel and MatLab
DATE functions.) Similar capabilities are available
using integer (INT) or truncation (TRUNC in Excel, FIX
in MatLab) functions. INT and TRUNC are identical for
positive numbers, but differ for negative numbers:
INT (–3.1) = –4, whereas TRUNC (–3.1) = –3. It is the
TRUNC or FIX function which is equivalent to integer
arithmetic. Thus, using the same variables as above, we
can rewrite Eqs. (Eweb-1a and Eweb-1b) for computa-
tion of JD from the date as:

   C = TRUNC ((M – 14) / 12) (Eweb-4a)

Table E-1. Julian Date at the Beginning of Each Year from 2000 to 2041. See text for
explanation of use. The day number for the beginning of the year is called “Jan. 0.0” (actually Dec.
31st of the preceding year) so that day numbers can be found by simply using dates. Thus, Jan. 1
is day number 1 and has a JD 1 greater than that for Jan. 0.   * = leap year.

Year
JD 2,400,000+
for Jan 0.0 UT Year

JD 2,400,000+
for Jan 0.0 UT Year

JD 2,400,000+
for Jan 0.0 UT

2000* 51,543.5 2014* 56,657.5 2028* 61,770.5

2001* 51,909.5 2015* 57,022.5 2029* 62,136.5

2002* 52,274.5 2016* 57,387.5 2030* 62,501.5

2003* 52,639.5 2017* 57,753.5 2031* 62,866.5

2004* 53,004.5 2018* 58,118.5 2032 63,231.5

2005* 53,370.5 2019* 58,483.5 2033 63,597.5

2006* 53,735.5 2020* 58,848.5 2034 63,962.5

2007* 54,100.5 2021* 59,214.5 2035 64,327.5

2008* 54,465.5 2022* 59,579.5 2036 64,692.5

2009* 54,831.5 2023* 59,944.5 2037 65,058.5

2010 55,196.5 2024* 60,309.5 2038 65,423.5

2011* 55,561.5 2025* 60,675.5 2039 65,788.5

2012* 55,926.5 2026* 61,040.5 2040 66,153.5

2013* 56,292.5 2027* 61,405.5 2041 66,519.5

Table E-2. Day Numbers for Day 0.0 of Each
Month. Leap years (in which February has 29 days)
are those evenly divisible by 4. However, years even-
ly divisible by 100 are not leap years, except that
those evenly divisible by 400 are. Leap years are in-
dicated by * in Table E-2.

Month Non-Leap Years Leap Years

January 0 0

February 31 31

March 59 60

April 90 91

May 120 121

June 151 152

July 181 182

August 212 213

September 243 244

October 273 274

November 304 305

December 334 335

Table E-2, Fig. Eweb-0, Eq. Eweb-4a
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JD0 = D – 32,075 + TRUNC (1,461
× (Y + 4,800 + C) / 4) + TRUNC (367
× (M – 2 – C × 12) / 12) – TRUNC (3
× (TRUNC(Y + 4,900 + C) / 100) / 4) (Eweb-4b)

JD = JD0 + F – 0.5 (Eweb-4c)

where again JD0, Y, M, D, and C are integers and F and
JD are real numbers. Applying the same rules to Eqs.
(Eweb-2a–Eweb-2j) gives the inverse formula for the
date in terms of JD as:

L = JD + 68,569 (Eweb-5a)

N = TRUNC ((4 ×  L) / 146,097) (Eweb-5b)

L = L – TRUNC ((146097 ×  N + 3) / 4) (Eweb-5c)

I = TRUNC ((4000 × (L + 1)) / 1,461,001) (Eweb-5d)

L = L – TRUNC ((1,461 × I) / 4) + 31 (Eweb-5e)

J = TRUNC ((80 × L) / 2,447) (Eweb-5f)

D = L – TRUNC ((2,447 × J) / 80) (Eweb-5g)

L = TRUNC (J / 11) (Eweb-5h)

M = J + 2 – 12 ×  L (Eweb-5i)

Y = 100 × (N – 49) + I + L (Eweb-5j)

where the variables are the same as Eq. (Eweb-2a–Eweb-
2j), except that D is now a real number corresponding to
the date and fraction of a day. Finally, Eq. (Eweb-3) for
the day of the week becomes:
W = JD – 7 × TRUNC ((JD + 1.5) / 7) + 2.5

= JD – 7 × INT (( JD + 1.5) / 7) + 2.5 (Eweb-6)

where 1 ≤ W < 2 corresponds to Sunday. The examples
given above can also serve as test cases for Eqs. (Eweb-
4a–Eweb-4c), (Eweb-5a–Eweb-5j), and (Eweb-6).

Modified Julian Date
The Julian Date presents minor problems for space

applications. Because it was introduced principally for
astronomical use, Julian Dates begin at 12:00 UT rather
than 0 hours UT, as the civil calendar does (thus the 0.5
day differences in Table E-1). In addition, the 7 digits
required for the Julian Date did not permit the use of sin-
gle precision arithmetic in older computer programs.
This is no longer a problem with modern computer stor-
age and number formats. Nonetheless, various forms of
truncated Julian dates have gained at least some use. 

The most common of the truncated Julian Dates for
astronomy and astronautics use is the Modified Julian
Date, MJD, given by:

MJD = JD – 2,400,000.5 (Eweb-7)
MJD begins at midnight, to correspond with the civil

calendar. Thus, in using Table  E-1, MJD is given by
adding the day of the year (plus fractions of a day, if
appropriate) to the number in the table, with the “.5” at
the end of the table-listing dropped. For example, MJD
for 18:00 UT on Jan. 3, 2016 = MJD 57,390.75. The

definition of MJD given here is that adopted by the Inter-
national Astronomical Union in 1997. Note, however,
that other definitions of MJD have been used. Thus, the
most unambiguous approach remains the use of the full
Julian Date.

Spreadsheets such as Excel or Matlab
Spreadsheets, such as Excel or Matlab, typically store

dates internally as some form of day count from a certain
predetermined date. We call K the Julian Date expres-
sion of such predetermined “Day 0” date. Thus, we can
either subtract two dates directly to determine a time
interval or convert them to Julian Dates and then make
the subtraction. It’s possible to convert them to JD by
simply finding the additive constant, K, given by:

K = JD – I (Eweb-8)

where I is the internal number representing a specific
known date, JD. Once K is determined, then the JD for
any date is:

JD = K + I (Eweb-9)

Many versions of Excel use Jan. 1, 1900, as “day 0,” such
that KExcel = 2,415,020.5. However, this should be
checked for individual programs because other starting
points are sometimes used and the starting point is a vari-
able parameter in some versions of Excel. While this can
be a very convenient function, Excel date routines run
only from 1900 to 9999.

Matlab typically uses Jan. 1, 0000, 0:0:0 as “day 0.”
Thus, in the formula above, KMatlab = 1,721,058.5.

Any of the day counting approaches will work suc-
cessfully over its allowed range. However, systems in-
tended for general mathematics or business use may not
account correctly for leap years and calendar changes
when historical times or times far in the future are being
evaluated. Thus, the use of the full Julian Date remains
the most unambiguous solution, particularly if a program
or result is to be used by more than one person or activity.
For a more extended discussion of time systems, see Se-
idelmann [2006]. 

E.2  Modern Time Measurement
—Short Duration Intervals

As one would expect, modern technology has lead to
ever increasing precision in the measurement of time.
However, in addition, new processes for measuring time
have been introduced, as well as new and fundamentally
different definitions of the meaning of time in both science
and engineering. In the 1950s, Ephemeris Time, ET, was
introduced, based on the dynamic equations of motion of
the Earth. For many years, this was used as the basis of
astronomical and astrophysical ephemerides, i.e., the most
precise orbit calculations. In 1967, the second was rede-
fined as having an atomic standard but ephemeris time
remained in use for the motion of planets and satellites. In
1984, ephemeris time was unceremoniously abandoned in
favor of Terrestrial Dynamic Time, TDT, in which the unit

Table E-2 , Fig. Eweb-0, Eq. Eweb-9
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of measure was the atomic second and the scale was cho-
sen to agree with ephemeris time in 1984. In 1991, the gen-
eral theory of relativity was explicitly adopted as the
theoretical background for defining both space and time
reference frames, TDT was renamed Terrestrial Time, TT,
and the definition of the second was “adjusted” to corre-
spond to atomic measurements at a specific location (i.e.,
at mean sea level on the surface of the Earth).*

Currently, there are 4 main types of time systems in use:
• Atomic Time, TAI, for which the unit of duration

corresponds to a defined number of wavelengths
for a specific atomic transition of a specific isotope 

• Universal Time, UT, for which the unit of duration
is the rotation of the Earth with respect to the Sun,
defined to be as uniform as possible despite varia-
tions in the physical rotation rate of the Earth 

• Sidereal Time, ST, for which the unit of duration is
the rotation of the Earth with respect to the vernal
equinox which, in turn, is nearly fixed with respect
to the mean positions of the stars 

• Dynamical Time, DT, for which the unit of dura-
tion is based on the orbital motion of the Earth,

Moon, and planets. Terrestrial Time, TT, belongs
to this family of timescales 

In addition, rapidly rotating pulsars may provide an
even more accurate standard for future time systems.
While the differences between the various time systems
are subtle, they can have important implications for
spacecraft systems and applications. Commonly used
modern time systems are defined in Table E-3.

Fortunately, the basis for all of the modern time sys-
tems is the Système International, SI, second. This is
defined as the duration of 9,192,631,770 periods of the
radiation corresponding to the transition between
2 hyperfine levels of the ground state of the Cesium-133
atom measured at mean sea level on the Earth. This def-
inition of the second corresponds more-or-less to
1 / 86,400 ( = 1 / [60 × 60 × 24]) of the rotation period of
the Earth, relative to the mean Sun. It is, of course, the
“more-or-less” part which ultimately causes most of the
problems in time measurement systems. Some of the
time systems are described in more detail below.

Atomic Time (TAI)
International Atomic Time, TAI (Temps Atomique

International), is a practical implementation of a time
standard based on the SI second. An excellent approxima-
tion to TAI can be maintained by laboratory Cesium

Table E-3. Common Time Systems. 

Kind
of Time

Defined
By

Fundamental
Unit Regularity Application

Sidereal
(ST)

Earth’s rotation relative to 
stars

Sidereal day,
1 rotation of Earth 
with respect to stars

Irregular Astronomical observations; 
determining UT and rotational 
orientation of Earth

Solar
Apparent Earth’s rotation relative to true 

Sun
Successive transits 
of Sun

Irregular and 
annual variations

Sundials*

Mean Earth’s rotation relative to 
fictitious mean Sun

Mean solar day Uniform and 
annual variations

Confuse students and engineers; use 
uniform time

Universal
 UT0 Observed UT Mean solar day Irregular Study of Earth’s wandering pole
 UT1 Corrected UT0 Mean solar day Irregular Shows seasonal variation of Earth’s 

rotation
 UT2 Corrected UT1 Mean solar day Irregular Basic rotation of Earth
 UTC=GMT=Z Atomic sec and leap sec to 

approximate UT1
Mean solar day Uniform except 

for leap sec
Civil timekeeping; terrestrial 
navigation and surveying; broadcast 
time signals

Ephemeris (ET) Fraction of tropical year 1900 Ephemeris sec Uniform Ephemerides prior to 1994; no longer 
in use

Atomic
(TAI)

Frequency of 
Ce-133 radiation

Atomic sec = 
Ephemeris sec

Uniform Basis of ET and UTC

GPS Atomic sec without leap sec Atomic sec Uniform Time component of
GPS signals

Relativistic
Terrestrial (TT)
Barycentric 
Dynamic (TDB)

Atomic sec at mean sea level 
on Earth
Orbital equations of motion 
with respect to barycenter of 
the Solar System

Atomic sec at Earth’s 
surface
Atomic sec adjusted 
for relativistic effects

Uniform

Uniform

Ephemerides

Transforms Earth-based time to time 
kept by the motions of the planets

* Devices showing the time of day by the shadow of a pointer (called style or gnomon) cast by the Sun on a plate or surface marked with lines that
indicate the hours of the day.

* An excellent discussion of the history of time systems is pro-
vided by Seidelmann [2006].

Table E-3, Fig. Eweb-0, Eq. Eweb-9
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clocks. A large number of such clocks are compared from
time to time and a weighted average is prepared which
provides a fine adjustment for each of the individual
clocks. The use of these Cesium-based clocks provides a
readily available basis for timekeeping for all types of
physical, astronomical, and space-related observation.

Universal Time (UT)
Universal Time, UT, follows the irregular rotation of

the Earth, and is often referred to as a type of solar time
because the objective in universal time is to remain syn-
chronized with the orientation of the Earth relative to the
Sun. The most important subcategory of universal time is
Coordinated Universal Time (UTC), which is the basis
for civil timekeeping and broadcast time signals world-
wide. UTC uses the SI second as the basic unit of time and
then adds (or, in principle, subtracts) a leap second at the
end of the last day of June and the last day of December
as needed to maintain close agreement with the rotational
orientation of the Earth. Thus, UTC lags behind TAI by an
integral number of seconds. For example, for January 1,
1996, TAI minus UTC equaled 30 sec exactly. There is a
long-term continuous drift between UTC and TAI that
cannot be predicted in advance, because UTC takes into
account irregularities in the motion of the Earth. 

In applications where precision is not critical, UTC
frequently goes by the name Greenwich Mean Time
(GMT), Zulu (Z), or simply Universal Time (UT). The lat-
ter definition is ambiguous since UT is also used for UT1,
another subcategory of universal time which even more
closely follows the real motion of the Earth. Fig. E-1
shows historical differences between TAI, UTC, and UT1.
Terrestrial Time (TT)

Terrestrial Time, TT, is the current substitute for what
was previously identified as terrestrial dynamic time,
TDT, which in turn replaced the earlier ephemeris time,
ET. Terrestrial time also uses the SI second as the unit of
measure but is more precisely defined in terms of the
dynamic equations of motion for the Earth. For most prac-
tical purposes, TT can be defined in terms of TAI by a sim-
ple offset, i.e., TT – TAI = 32.184 sec. (This offset is due
to the historical origins of the time system. TT matched ET
in 1984, when the use of ET was discontinued.) Conse-
quently, for example, in January 1996, TT – UTC =
32.184 + 30 sec = 62.184 sec. Because atomic clocks
have a small drift rate, changes between TT and TAI on the
order of microseconds can accumulate over a period of
years. (A more precise definition of terrestrial time based
on the theory of relativity is given on the website.) 
GPS Time

The GPS satellite system uses its own unique time
called GPS time. Although presumably it could be
accommodated with modern computer systems, the addi-
tion of a leap second is certainly inconvenient for GPS
processing algorithms. Consequently, the GPS clock
uses the SI second but does not introduce leap seconds.
Like TT and TAI, GPS time maintains a fixed offset from
UTC that changes by 1 sec whenever a leap second is

introduced in UTC. The difference between GPS time
and TAI is constant: GPS time – TAI = 19 sec., except for
a quantity of the order of tens of nanoseconds, varing
with time. In order to allow UTC to be recovered from
the time signals broadcast by GPS, the integral number
of seconds by which the two differ is included in sub-
frame 4 of the GPS navigation message. (See Fig. E-9 in
Sec. E.2.) Consequently, a GPS receiver may provide
time output which is either GPS time or UTC. The GPS
system is becoming a common mechanism for time
transfer between 2 locations on the Earth or between
2 satellites in low-Earth orbit. An error budget for
GPS time transfer when both locations have a common
GPS satellite in view is given in Table E-4.

E.3  Discontinuous Time
One of the most interesting characteristics of modern

spacecraft is that updating the spacecraft clock, either from
the ground or from GPS, means that time will appear to be
discontinuous on board (see boxed example). Because the
updates are typically very small, this makes little differ-
ence to time-tagging of on-board observations and similar
activities.         

Fig. E-1. Historical Differences Between Universal Time and
Atomic Time.

Table E-4. Error Budgets for GPS Time Transfer (with Two
Satellites in View). [Seidelmann, 2006]

Type of
Delay

Best Case 
RMS 
(ns)

Worst 
Case RMS 

(ns)
Satellite Ephemeris
Ionospheric
Tropospheric
User-Position
Multipath
Receiver
Signal-to-Noise

3
2
1
1
1
1
7

10
100
20
1
2
1
1

Total RMS (for single 13-minute track) 4.2 103
NOTE: Some of the errors depend on the distance (for example, the
satellite ephemeris). The best case applies to distances of
2,000–3,000 km; the worst case is for distances of 6,000–8,000 km.
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Spacecraft
and “Discontinuous Time”

For working problems in mechanics, time and the flow of time is one of our most basic and in-
grained concepts. One of our most fundamental perceptions of time is that it is continuous and in
some sense “smoothly flowing.” This philosophical view of time may or may not be true in the ex-
tremes of general relativity or quantum electrodynamics, but it is certainly untrue for nearly all
spacecraft clocks, due simply to the problem of synchronization.

Time is kept on board a spacecraft by a clock that drifts relative to the outside world. If we let the
clock drift indefinitely it becomes increasingly difficult to make or interpret observations of the
world. Accurate timing of observations is critical both for many scientific observations and also to
correctly locate observations on the surface of the Earth or another planet. This implies a need to
update spacecraft clocks from time to time by synchronizing them with the outside world using
GPS, radio time signals, or a ground station clock synchronized with the worldwide time network.

Unfortunately, this implies a discontinuity or jump in time tagging of things like the spacecraft
position as a function of time. For example, we may find ourselves in a position where the space-
craft is over the equator at exactly 12:00:00 and 100 km north of the equator at 12:00:01, such that
the spacecraft appears to have made a jump in the space-time continuum. Even worse, we may find
that the spacecraft is in two different places at the same time. Suppose that we cross the equator at
12:00:00. We reset the spacecraft clock backwards to 11:59:59 and then proceed along in the orbit
such that we are now a few km north of the equator, once again, exactly at noon. While this is a
perfectly reasonable sequence of events, remarkably few spacecraft data filters are prepared to han-
dle discontinuous time.

Figure Eweb-1 shows the large-scale drift of the clock on the BREM-SAT spacecraft over a year.
Figure Eweb-2 shows the fine drift on a day-to-day basis. With this particular clock one would need
to introduce a correction averaging ∼3 sec per day and ranging from +12 sec to –5 sec depending
on the date. This corresponds to the spacecraft being ahead or behind by up to 90 km, even if the
orbit propagation is perfect. Errors of this magnitude are certainly non-trivial in the interpretation
of spacecraft data, including orbit and attitude information. 

Both the lack of synchronization and the need to resynchronize clocks from time to time represent
significant practical problems for spacecraft operations, and should be taken into account in both
system and software design.

For simple time-tagging of data, this is not typically a problem. The synchronization error is sim-
ply one more component of the time-tagging error. The problem occurs whenever we need precise
time differences or make use of the dynamic equations of motion for orbit, attitude, or payload data
processing. In these processes, we must verify that the software will accommodate both “time
jumps” and “time reversal.”

Fig. Eweb-1. Difference Between GPS Clock and BREM-SAT
Computer Clock. This figure shows the cumulative large-scale
drift of the BREM-SAT computer clock vs. a GPS clock over a
year. The sharp drop shortly after day 50 reflects the loss of con-
tact with BREM-SAT and subsequent reset after reacquisition.
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Fig. Eweb-2. Day-to-Day Difference Between GPS Clock and
BREM-SAT Computer Clock. The figure shows fine drift of the
BREM-SAT computer clock vs. a GPS clock on the ground. The
reuslts are for each day, not cumulative.
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However, spacecraft are also becoming more sophis-
ticated and dynamic equations of motion are often used
in data filtering and system modeling, such as the propa-
gation of orbit and attitude states. Unfortunately, very
few analytic systems take into account the cause or effect
of time discontinuities. This has the potential of causing
substantial problems for on-board software and was a
key (and painful) issue in one of the spacecraft I (James
Wertz) was involved with. The issue of “discontinuous
time” is addressed in the adjacent boxed example. Any-
one involved with time systems or high accuracy analy-
sis of spacecraft data should be aware of this potential
problem. So long as you are aware that “time” on the
spacecraft can move forward, backward, or stand still
over very brief intervals, finding solutions is typically
not difficult—when they are planned in advance.

E.4  Solar Time, Sidereal Time,
and Longitude on the Earth

Once we have launched a spacecraft into orbit and
turned off the rockets, that orbit remains approximately
fixed in inertial space, while the Earth continues to rotate
beneath it. As described in Chap. 9, this means that the
Earth underneath the spacecraft will change continu-
ously, even though the spacecraft will repeat its path very
nearly in inertial coordinates. To keep track of where the
spacecraft is with respect to the surface of the Earth, we
need to keep track of the rotational orientation of the
Earth itself. This is done by knowing the sidereal time,
which measures the rotation of the Earth relative to iner-
tial space or the fixed stars. In contrast, civil time, such
as that kept by a clock or radio signals, is a close approx-
imation to solar time, which measures the rotation of the
Earth with respect to the Sun. As shown in Fig. Eweb-3,
solar time differs from sidereal time because of the
motion of the Earth in its orbit around the Sun. When the
Earth has made one rotation on its axis relative to the
stars, it has also moved approximately 1/365th of the
way around its orbit. Consequently, it takes about 4 min
longer for the Earth to return to the same orientation rel-
ative to the Sun. Therefore, a solar day, or civil day of 24
hours, will be about 4 min longer than a sidereal day of
about 23 hr 56 min. In order to quantify the relationship
between sidereal time and civil time, we need a better
understanding of solar time and the measurement of azi-
muth angles, both on the Earth and in the sky.*

The celestial meridian is the great circle in the sky
passing through the celestial poles and the observer’s
zenith, i.e., the point straight overhead. As shown in
Fig. Eweb-4, the hour angle, HA, is the azimuthal orien-
tation of an object measured westward from the celestial
meridian. As the Earth rotates eastward, an object on the
celestial sphere (i.e., a star, planet, or the Sun) appears to
move westward and its hour angle increases with time. It

takes about 24 hours for an object to move completely
around the celestial sphere, or about 1 hour to move
15 deg in HA; thus, 1 deg of HA corresponds to about
4 min of time. Therefore, the rotation of the Earth allows
us to measure azimuth angles either in degrees or hours,
minutes, and seconds, or equivalently to measure time as
either hours, minutes, and seconds, or degrees. Because
of the small difference between the solar and sidereal
days, 1 deg actually differs slightly from 4 min. The cor-
rect transformation is: 

1 sidereal day = 86,164.1006 sec 
= 360 deg (Eweb-10a)

Therefore,

1 deg = 239.344 724 sec
= 3 min 59.344 724 sec (Eweb-10b)

1 sec = 0.004 178 074 13 deg
= 0.000 072 921 150 rad (Eweb-10c)

1 min = 0.250 684 448 deg
= 0.004 375 269 00 rad (Eweb-10d)

The apparent solar time is the local HA of the Sun
expressed in hours, plus 12 hours. Thus, the Sun crosses
the observer’s celestial meridian at an apparent solar time
of 12:00 noon. Apparent solar time is measured by a sun-
dial. We could, for example, construct a simple sundial
by driving a long nail perpendicularly through a flat piece
of wood. For an observer in the northern hemisphere, if
the nail is then pointed to the north celestial pole, the
plane of the wood is parallel to the equatorial plane, and
the angle relative to south of the nail’s shadow on the
wood is a measure of the HA, or the apparent solar time.

Due to the Earth’s orbital motion, the Sun appears to
move eastward along the ecliptic throughout the year.
Because the Earth travels in an elliptical orbit it moves
faster when near the Sun and slower when it is more dis-
tant. Therefore, the length of the solar day varies
throughout the year. 

* For definitions of rotation angles, the celestial sphere, and the
globe plots in this Appendix see Chap. 8.

Fig. Eweb-3. Sidereal vs. Solar Day. The solar day (relative to
the Sun) is about 4 min longer than the sidereal day (relative to
the stars) because the Earth has moved in its orbit during the day
and must rotate further to bring the Sun overhead again. The
view shown is from the north ecliptic pole.
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However, even if the Earth were in a circular orbit
with constant speed, the azimuthal component of the
Earth’s motion (parallel to the celestial equator) would
vary, due to the inclination of the ecliptic relative to the
equator. To illustrate this, consider a satellite in a nearly
polar orbit as shown in Fig. Eweb-5. The satellite
changes azimuth slowly while near the equator, and very
rapidly while near the poles. Because the inclination of
the ecliptic to the Earth’s equator is only 23.5 deg rather
than the large inclination illustrated in the figure, the
variation in the length of the day due to the inclination of
the ecliptic is small. The cumulative variation due to both
eccentricity and inclination reaches a maximum of
16 min in November.    

To provide a more uniform time than the real Sun, a
fictitious mean Sun, which moves along the equator at a
constant rate equal to the average annual rate of the Sun,
has been introduced. Mean solar time is defined as the
HA of the mean Sun. The difference between mean and
apparent solar time is called the equation of time. This is
often represented by an analemma, or figure 8, which
frequently shows up in the middle of the Pacific ocean on
globes of the world. This is the correction that is applied
to a sundial to determine mean solar time.

In contrast to solar time, sidereal time, ST, is based on
the rotation of the Earth relative to the stars and is
defined as the HA of the vernal equinox, .* The local
sidereal time, LST, is defined as the local HA of ,
LHA . The Greenwich sidereal time, GST, (also called
the Greenwich HA of the vernal equinox, GHA  ) is the
hour angle of the vernal equinox for an observer on the
Earth’s prime meridian, which goes through the Royal
Greenwich Observatory.

The right ascension, RA†, of any star or other celestial
object is the azimuthal component of the star’s position
measured eastward from . It is the celestial equivalent
of longitude measured on the surface of the Earth. 

Figure Eweb-6 shows the azimuthal angular relation-
ships between , a star or other celestial object, the
Greenwich meridian, and the local meridian of the
observer. All of these are azimuthal angles projected
onto the celestial equator. From this figure we can deter-
mine a variety of relationships. For example, the local
sidereal time, LST, may be determined from the RA and
observed HA of any star:

LST = LHA  = [LHA* – RA*]mod24 hrs (Eweb-11)

where LHA* and RA* are the HA and RA of the star, both
converted to time and mod24 hrs is the modulo function,
which expresses the result as a quantity between 0 and
24 hr. In the example in Fig. Eweb-6, LHA* is 135 deg

Fig. Eweb-4. Definition of Hour Angle. As the Earth rotates
eastward, an object fixed in the sky appears to rotate westward
and the hour angle increases. 

Fig. Eweb-5. Variation in Azimuthal Rate for a Satellite Mov-
ing Uniformly in its Orbit. A1, A2,…,A5 are azimuthal projec-
tions of the orbital points P1, P2,…,P5 and are equally spaced in
time. 
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* The vernal equinox is the location of the Sun in the sky on the
first day of spring. It is located at one of the two intersections
between the ecliptic plane and the celestial equator. The symbol
for the vernal equinox ( ) is the astronological symbol for the
constellation Aries, the Ram, because the vernal equinox is also
called the First Point of Aries. (The vernal equinox was in Aries
when the name was given to that region of the sky.)

† The units here can be particularly confusing. Throughout this
book we use deg and decimal fractions of a deg for most an-
gular measurements, although radians will occasionally be
used. In astronomical work, angles, and particularly declina-
tion (the latitude-like measurement on the celestial sphere),
are often measured in deg, min, and sec of arc, which are writ-
ten as, 10°, 10′, and 10″, where 1 min of arc is 1/60th deg, and
1 sec of arc is 1/60th of a min. Very small angles such as the
resolution of optical instruments, are frequently measured in
sec of arc. Because right ascension also corresponds to time,
it is often measured in hours, min, and sec, written as 10h,
10m, 10s. Here 1 hr corresponds to 15 deg, 1 min corresponds
to 0.25 deg, and 1 sec is 1/60th of a min, or 1/240th of a deg.
Thus, min and sec of right ascension are not the same as min
and sec of declination. We avoid this confusion by using deg
and decimal fractions of a degree for all angles.

Table E-4 , Fig. Eweb-5, Eq. Eweb-11
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or 9 hours, RA* is –90 deg or –6 hours and LST is 15
hours. Similarly, we can determine the Greenwich side-
real time, GST, from:

GST = GHA  = [GHA* – RA*]mod24 hrs
(Eweb-12)

GHA* is the GHA of any star, converted to time. Again in
the example figure, GHA* is 45 deg or 3 hours; thus GST
is 9 hours. Note that the sidereal time at Greenwich is equal
in magnitude to the right ascension of the Greenwich me-
ridian. The difference between GST and LST (6 hours in
the example of the figure) corresponds to the observer’s
east longitude (90 deg in the example). In general,

LST = GST – EL /15 (Eweb-13)

where EL is the observer’s east longitude in deg and LST
and GST are in hours.

From the definition of mean solar time, the Green-
wich mean time, GMT, or universal time, UT, equals the
GHA of the fictitious mean Sun plus 12 hours:

UT = GMT = GST – RA0 + 12 hours (Eweb-14)

where RA0 is the right ascension of the mean Sun. For a
given UT on any calendar date, the expression for the
GST is given by 

GST = RA0 – 12 hours + UT
= 6h38m45s.836 + 8,640,184s.542T
+ 0s.092 9T2 + UT (Eweb-15)

where T is the number of Julian centuries of 36,525 days
which have elapsed since noon (GMT) on January 0,
1900. The corresponding equation for GST expressed in
degrees is

GST = 99°.690 983 + 36,000°.768 925T
+ 0°.000 387T2 + UT (Eweb-16)

where UT is in degrees and T is again in Julian centuries. 

The Julian date, JD, defined in Sec. E.1 provides a con-
venient mechanism for determining T in Eqs. (Eweb-15)
and (Eweb-16). The JD for Greenwich mean noon on Jan-
uary 0, 1900 (i.e., for January 0.5 1900) is 2,415,020.0.
The JD for any date in the current era may be obtained by
adding the day number of the year to the date JD for Jan-
uary 0.0 UT of that year as listed in Table E-1. For
example, to find the GST for 3 hours UT on July 4, 2026: 

Given the Greenwich sidereal time, we can finally
compute the longitude of the subsatellite point for a
spacecraft whose ephemeris is known. Specifically from
Eqs. (Eweb-11 and Eweb-13) we have

ELspc = RAspc + GST (in degrees) (Eweb-17)

where RAspc is the right ascension in degrees of the
spacecraft at the time in question and EL is the East lon-
gitude of the subsatellite point.

 Note that the Greenwich sidereal time defined by
these equations is a uniformly flowing time whereas the
actual rotation of the Earth on its axis has a very low
amplitude wobble as described in the front of the appen-
dix. Consequently, the accuracy of the resulting longitude
from the general equations above will be about 0.005 deg
(= 500 m at the equator) if the spacecraft ephemeris is
known precisely.

E.5  Relativistic Time

On the whole, relativity is not something to worry
about in space missions, except for spacecraft designed
specifically to test relativistic theories. Nonetheless, we
need to understand the boundaries of Newtonian physics
so that we can understand the magnitude of the errors
that occur and under what circumstances they become
relevant. Consequently, this section summarizes the rel-
ativistic effects most important for work with spacecraft
clocks and the level of error that results when relativistic
effects are ignored. A mathematical summary of relativ-
istic time as it applies to the generation of ephemerides is
given by Seidelmann [2006]. A detailed mathematical
and physical explanation of most effects in special and
general relativity is provided by Misner et al. [1973]. A
detailed explanation of relativistic effects applied to
spacecraft and an extensive reference list are given by
Ashby and Spilker in Parkinson and Spilker [1996].
However, this volume does not cover the relativistic time
systems adopted by the IAU which are discussed by

Fig. Eweb-6. Relationship Between Local Position on the
Earth, Hour Angle, and Sidereal Time. The view is looking
down from the Earth’s North Pole. 
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Seidelmann [2006]. More popular and readable explana-
tions of the physical phenomenon in special and general
relativity are provided by a wide variety of texts includ-
ing, for example, Einstein [1950], Mermin [1968], and
Kaufmann, III [1973].

The fundamental relativistic effect that is important
for time systems is that the rate at which time flows
depends on the observer. In special relativity the most
important effect, known as time dilation, is that moving
clocks run slow, i.e., any clock in motion with respect to
me runs slower than my clock. Here the concept of a
“clock” is a very general way of expressing the flow of
time, and applies to clocks as fundamental as those
which are inside an atom. One of the most compelling
demonstrations of time dilation is associated with the
radioactive decay of atomic particles. When cosmic rays
interact with the Earth’s upper atmosphere, they produce
streams of very high velocity mesons. These mesons
undergo radioactive decay, but do so far more slowly
than do mesons produced in experiments “at rest” with
respect to us on the surface of the Earth.

In general, if we have a collection of observers in
motion with respect to each other (for example, observ-
ers with very precise clocks on a collection of spacecraft
in different orbits) each observer will determine that all
of the other observers’ clocks run slow. (It is not just that
they see the clocks run slow due to the finite velocity of
light. They take the velocity of light into account and cal-
culate that all of the other clocks actually are running
slow.) This leads to a wide variety of apparent para-
doxes, in terms of different observers comparing the
results of timing experiments. Most of these are resolved
by a second important phenomenon in relativity—the

lack of absolute simultaneity, which states that whether
two distant events are simultaneous (occur at the same
time) does not have an absolute meaning, but depends
upon the state of motion of the observer.

In the general theory of relativity, an effect similar to
time dilation is that clocks run slower in a gravitational
field.* Thus, clocks on the surface of the Earth run more
slowly than those away from any of the planets, even if
they are not moving relative to the Earth. Similarly,
clocks run slower as they approach any massive object.

Time dilation, the slowing of clocks in a gravitational
field, and related relativistic effects are discussed in
detail in the references above. The important issue for
spacecraft is that the flow of time in its most basic sense
is not an absolute thing but depends on both the gravita-
tional field and the state of motion of the clock. Clocks
in orbit, even atomic clocks, don’t behave like clocks on
the surface of the Earth, although the differences are
remarkably small.  

* Effects in general relativity are tied to those in special relativity
by the Principle of Equivalence which states that the effects of
a gravitational field are equivalent to those of an accelerating
frame of reference. This also implies that a freely falling, non-
rotating body is equivalent to an accelerating one which is not
in a gravitational field at all. Thus, if an object has fallen from
infinity to near the surface of a gravitating body, its “clock” is
equivalent to an accelerating one that is not in a gravitational
field. Therefore, the slowing of clocks in a gravitational field is
equivalent to the time dilation of a “stationary” clock near the
celestial body when compared with one which is moving at the
velocity it would have when falling from being at rest at infinity
(i.e., the escape velocity of the celestial body).   

Table Eweb-2. Typical Relativistic Time Effects. Relativistic effects are not important for normal spacecraft operations, but
may become relevant if extreme precision is required. Note that for the Doppler shift (2nd row), the first term is the ordinary (New-
tonian) Doppler shift and the second term is the relativistic correction.

Effect Basic Formulas Examples
Time Dilation 
(Moving clocks
run slow)

Time delay: In Low-Earth orbit  = 11 ms/yr
In Earth’s orbit about Sun = 158 ms/yr
On Fastest Spc (60 km/s) = 632 ms/yr

Doppler shift (frequency shift) 
due to spacecraft velocity:

Effect on signal at 10.23 MHz (GPS):
In Low-Earth orbit  = 269.747 + 0.004 Hz
In Earth’s orbit about Sun = 1023.708 + 0.051 Hz
On Fastest Spc = 2047.416 + 0.205 Hz

Sagnac effect (time delay due to 
rotating frame):

On Earth’s surface = 0.038 ms/yr
On Jupiter’s surface = 28 ms/yr

Gravitational Time 
Dilation
(Clocks run slow in a 
gravitational field)

Gravitational frequency shift: Effect on signal at 10.23 MHz (GPS):
At surface of Earth = 0.007 Hz
At surface of Jupiter = 0.202 Hz
At surface of Sun = 21.702 Hz
At Earth distance (due to Sun’s gravitational field) = 0.101 Hz

Definition of Variables:
c  =  velocity of light (299,792,458 m/s) ω = angular rotation rate
v  =  velocity of clock relative to the observer t = time
θ  =  angle between velocity vector and line of sight Δt = time difference
R =  radius of the celestial body f = frequency
μ  =  GM  =  gravitational constant of the celestial body Δf = frequency shift
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As summarized in Table Eweb-2, relativistic effects
are dramatically small and are of no consequence for most
space missions. For example, a clock on a spacecraft in
low-Earth orbit, moving at 8 km/s relative to an observer
on the Earth, runs slow by 11 msec per year or a fractional
shift of 3.5 × 10–10. A clock sitting on the “surface” of
Jupiter runs slow by 1 part in 5 × 107 which changes a 10
MHz signal from a spacecraft there by 0.2 Hz.   

The effects of relativity are extremely small, even by
the standards of precise spacecraft measurements. None-
theless, they are measurable and do have an impact on
our basic understanding of time systems and, perhaps
more importantly, what we mean by time. In 1991 the
general theory of relativity was explicitly adopted as the
theoretical framework for defining space-time reference
frames.* The implication is that time is no longer defined
in an absolute sense, i.e., as so many ticks of an atomic
clock, but only as so many ticks in a specific coordinate
frame. The key issue for spaceflight is that no matter
how you measure it—the decay of subatomic particles,
the clicks of a Cesium clock, or the number of old movies
you can watch—time flows at a different rate on board
spacecraft than it does on the Earth. We need to tie our
definition of time to the coordinate frame which we are
using. This in turn leads to the 2 remaining types of time,
both of which fall into the category of dynamic time, or
time which depends on the orbital motion in the Solar
System.

Terrestrial Time (TT)

The fundamental unit of Terrestrial Time is the SI sec-
ond, as kept by a perfect atomic clock at mean sea level
on the surface of the Earth. Here the second is the same
as that defined by International Atomic Time, TAI, but is
given a more precise definition by being attached to a
specific reference frame. Because the units are identical,
TT is equal to TAI time plus an offset of 32.184 sec. The
offset comes about for historical reasons having to do
with the evolution of time systems. In a series of actions
from 1950 to 1958, Ephemeris Time, ET, was adopted by
the international community as the most fundamental
definition of time based on the motion of the planets as
defined by Simon Newcomb’s tables of the Sun pub-
lished in 1900. In 1967, the atomic clock definition of the
second was introduced, which led to very small varia-
tions in the rate of time and small offsets in differently
defined time systems. In 1984, ET was abandoned in
favor of terrestrial dynamic time, TDT. Finally, in 1991
when relativity was adopted as the appropriate analytical
framework, TDT was renamed terrestrial time, TT. This

is currently the time scale in use for generating ephemer-
ides for the motion of celestial objects as seen from the
surface of the Earth.

Barycentric Dynamic Time (TDB)

Barycentric dynamic time is the independent variable
in the orbital equations of motion with respect to the
barycenter of the solar system. Thus, TDB transforms
time as measured on the surface of the Earth to time as
kept by the motion of the planets (thus, in a different
coordinate frame). TDB and TT are very close to each
other (i.e., to within less than 2 msec), with the differ-
ences between them being determined by means of
mathematical expressions. An approximate formula for
converting TT to TDB that is sufficient for all practical
applications is: 

TDB =TT + 0.001 658 sin g
+ 0.000 014 sin 2g (Eweb-18)

where the times and coefficients are in SI seconds and g,
expressed in deg, is given by

g = 357.53 deg
+ 0.985 600 3 (JD –  2,451,545.0) (Eweb-19)

and JD is the Julian date expressed to two decimals of a
day.    
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