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F.2.2. Quaternions 

Lawrence Fallon, III 

Reproduced with permission from Spacecraft Attitude Determination and Control [Wertz, 1978], Appendix D. 
 

The quaternion representation of rigid body rotations leads to convenient kinematical expressions 
involving the Euler symmetric parameters (Sections 12.1 and 16.1). Some important properties of quaternions 
are summarized in this appendix following the formulation of Hamilton [1866] and Whittaker [1961].  

Let the four parameters (ql ,q2 ,q3 ,q4) form the components of the quaternion, q, as follows: 

 q ≡ q4 + iq1 + jq2 + kq3  (Fweb-96) 

where i, j, and k are the hyperimaginary numbers satisfying the conditions 

 

i2 = j2 = k 2 = −1
ij = − ji = k
jk = −kj = i
ki = −ik = j

 (Fweb -97) 

The conjugate or inverse of q is defined as  

 q* ≡ q4 − iq1 − jq2 − kq3  (Fweb -98) 

The quantity, q4, is the real or scalar part of the quaternion and iq1 + jq2 + kq3 is the imaginary or vector part. 
A vector in three-dimensional space, U, having components U1, U2, U3 is expressed in quaternion notation 

as a quaternion with a scalar part of zero, 

 U = iU1 + jU2 + kU3 (Fweb -99) 

If the vector q corresponds to the vector part of q (i.e., q = iq1 + jq2 + kq3), then an alternative representation 
of q is 

 q = (q4, q) (Fweb -100) 

Quaternion multiplication is performed in the same manner as the multiplication of complex numbers or 
algebraic polynomials, except that the order of operations must be taken into account because Eq. (Fweb -97) 
is not commutative. As an example, consider the product of two quaternions 

 
  ′′
q = ′q = q4 + iq1 + jq2 + kq3( ) ′q4 + i ′q1 + j ′q2 + k ′q3( )  (Fweb -101) 

Using Eq. (Fweb -97), this reduces to  

 

  

′′q = q ′q = −q1 ′q1 − q2 ′q2 − q3 ′q3 + q4 ′q4( )
+ i q1 ′q4 + q2 ′q3 − q3 ′q2 + q4 ′q1( )
+ j −q1 ′q3 + q2 ′q4 + q3 ′q1 + q4 ′q2( )
+ k q1 ′q2 − q2 ′q1 + q3 ′q4 + q4 ′q3( )

 (Fweb -102) 

If q′ =(q′4, q′), then Eq. (D-7) can alternatively be expressed as  

 
   
′′q = q ′q = q4 ′q4 − q ⋅ ′q , q4 ′q + ′q4q + q × ′q( ) (Fweb -103) 

The length or norm of q is defined as 
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q ≡ qq* = q*q = q1

2 + q2
2 + q3

2 + q4
2  (Fweb -104)  

If a set of four Euler symmetric parameters corresponding to the rigid body rotation defined by the 
transformation matrix, A (Section 12.1), are the components of the quaternion, q, then q is a representation of 
the rigid body rotation. If q′ corresponds to the rotation matrix A´, then the rotation described by the product 
A′A is equivalent to the rotation described by qq′. (Note the inverse order of quaternion multiplication as 
compared with matrix multiplication.)  

The transformation of a vector U, corresponding to multiplication by the matrix A, 

 U′ = AU (Fweb -105) 

is effected in quaternion algebra by the operation 

 U′ = q*Uq (Fweb -106) 

See Section 12.1 for additional properties of quaternions used to represent rigid body rotations.  
For computational purposes, it is convenient to express quaternion multiplication in matrix form. 

Specifically, let the components of q form a four-vector as follows:  
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q4

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (Fweb -107)  

This procedure is analogous to expressing the complex number c = a + ib in the form of the two-vector, 

c =
a
b
⎡

⎣
⎢
⎤

⎦
⎥  

In matrix form, Eq. (Fweb -102) then becomes 
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 (Fweb -108)  

Given the quaternion components corresponding to two successive rotations, Eq. (Fweb -108) conveniently 
gives the quaternion components corresponding to the total rotation. 
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